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Abstract

In this thesis we construct a functor from the perfect subcategory of the coherent
version of the affine Hecke category in type A to the finite constructible Hecke ca-
tegory, partly categorifying a certain natural homomorphism of the corresponding
Hecke algebras. This homomorphism sends generators of the Bernstein’s commutative
subalgebra inside the affine Hecke algebra to Jucys-Murphy elements in the finite
Hecke algebra. Construction employs the general strategy devised by Bezrukavnikov
to prove the equivalence of coherent and constructible variants of the affine Hecke
category. Namely, we identify an action of the category Rep(GLn) on the finite Hecke
category, and lift this action to a functor from the perfect derived category of the
Steinberg variety, by equipping it with various additional data.
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Chapter 1

Introduction

1.1 Algebraic setting
This thesis is concerned with the categorification of a certain homomorphism between
the affine and finite Hecke algebras in type A, in the setting of known geometric
categorifications of the algebras themselves.

The homomorphism in question may be most easily seen on the level of the cor-
responding braid groups. If we interpret the braid group Bn on n strands as the
fundamental group of the configuration space Confn(C) of n points in the complex
plane C, and the affine braid group Baff

n as the fundamental group of the configura-
tion space Confn(C∗) of n points in the punctured complex plane C∗, based at some
configuration ζ not meeting 0 ∈ C, then the inclusion C∗ → C gives the homomorpism

Baff
n ' π1(Confn(C∗), ζ) → π1(Confn(C), ζ) ' Bn,

see Figure 1-1. This descends to the homomorphism

Π : H̃aff
n → Hn

between the corresponding extended affine Hecke algebra of the reductive group GLn

and the finite Hecke algebra. Recall that H̃aff
n contains Hn as a subalgebra. It also

Figure 1-1: Homomorphism on the level of braid groups
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contains a large commutative subalgebra, defined by Bernstein, which is identified
with the group algebra of the (co-)weight lattice of GLn. The homomorphism Π has
the following remarkable property: under some choice {e1, . . . , en} of generators in this
lattice, the corresponding Bernstein generators {θ1, . . . , θn} map to the multiplicative
Jucys-Murphy elements {L1, . . . , Ln} in the finite Hecke algebra. Π is identity when
restricted to Hn ⊂ H̃aff

n .
Symmetric polynomials in θ±1

i are known to span the center Z(H̃aff
n ) of H̃aff

n , see
[Lus83], and so are symmetric polynomials in Li for Hn, see [DJ87]. We get the
following diagram

Z(H̃aff
n ) H̃aff

n

Z(Hn) Hn

Π|Z Π
(1.1)

All corners of this diagram have their geometric categorifications.

1.2 Categorifications

In what follows we work over the field of the complex numbers C. All the categories
considered are C-linear and all the varieties are defined over C.

Categorification of the finite Hecke algebra comes in many forms, of which we will
use some completed variant of the monodromic category D̂f of constructible sheaves
on the base affine space for GLn. The categorification of the center is the completed
variant of the derived category of unipotent character sheaves on GLn, Db(ĈS): in
fact, it is known that the appropriate variant of the category of character sheaves
is the Drinfeld center of the finite Hecke category. See [BFO12] for the statement
in the setting of abelian categories of D-modules, [BZN09] for the statement in the
derived setting, and [Lus15] for the related statement in arbitrary characteristic. The
inclusion of the center is given by the so-called Harish-Chandra functor, which we
denote hc, introduced by Lusztig. See also [Gin89], where the relation to central
objects in the Hecke category is noted.

While categorifications of the finite Hecke category all come from the world of con-
structible sheaves (or D-modules), one can obtain a categorification of the extended
affine Hecke algebra both in constructible and coherent settings. Namely, our con-
structible avatar of the affine Hecke category is the completed monodromic variant of
the derived category of constructible sheaves on the affine flag variety of GLn, equiv-
ariant with respect to the (radical of) Iwahori subgroup, which we will denote simply
by Db

I(Flaff) in this introduction. It is a result of [Bez16], that the constructible affine
Hecke category is equivalent to (the completed variant of) the derived category of
the equivariant coherent sheaves on the Steinberg variety, which we will denote by
Db(CohG(Ŝt)) in this introduction. Under this equivalence, the structure sheaf OŜt
corresponds to the pro-unipotent tilting sheaf of the open orbit, T̂w0 .

Categorification of the center of the affine Hecke algebra is known as a Satake
category PG(O)(Gr) of equivariant perverse sheaves on the affine Grassmannian cor-
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responding to GLn, see [Lus83], [MV07]. It was shown in op.cit., that this category is
equivalent to the category Rep(GLn) of representations of GLn. The corresponding
inclusion was categorified in [Gai01] (note that Rep(GLn) is much smaller than the
actual Drinfeld center of the affine Hecke category). All the categories discussed are
equipped with the monoidal structure, given by convolution, which we denote by ∗
in this introduction. We obtain the following diagram:

Rep(GLn) PG(O)(Gr) Db
I(Flaff) Db(CohG(Ŝt))

Db(ĈS) D̂f

[MV07]
∼

[Gai01] [Bez16]
∼

hc

(1.2)

Conjecture. There are monoidal functors replacing dashed arrows in the diagram
(1.2), making it commutative and categorifying the diagram (1.1).

In this thesis, we prove the following weakened form of this conjecture. We have a
perfect variant DG

perf(Ŝt) of the coherent Hecke category. Since the Steinberg variety
is singular, it is not equivalent to the full derived category. Our main result is the
following

Theorem (see Theorems 1, 3). There are monoidal functors $Z, $, making the
following diagram commutative:

Rep(GLn) DG
perf(Ŝt)

Db(ĈS) D̂f

[Gai01](·)∗OŜt

$Z $

hc(·)∗T̂w0

(1.3)

It is a categorification of a part of the diagram (1.1).

In the rest of the introduction, we describe the plan of the proof of this theorem.

1.3 Jucys-Murphy sheaves
The fact that Π is defined already for braid groups allows us to identify the desired
images of the so-called Wakimoto sheaves categorifying Bernstein’s generators.

We have a standard basis {tw} of the finite Hecke algebra, indexed by elements w
of the Weyl group. A choice of a set of simple reflections {si} gives a set of generators
ti := tsi . One can pick the generators {θi} of Bernstein’s commutative subalgebra so
that

Π(θ1) = te = 1 =: L1,

Π(θk+1) = tkLktk =: Lk+1.

Elements Lk are well-known in the study of Hecke algebras, and are called the
multiplicative Jucys-Murphy elements. See [IO05] for a review.

13



Basis {tw} has a natural categorical analogue in the Hecke category D̂f , given by
the so-called standard sheaves ∆w (for the precise definition and notations see the
main body of the paper). We can readily define

L1 := ∆e,

Lk+1 := ∆sk ∗ Lk ∗∆sk .

We call the complexes Lk Jucys-Murphy sheaves.
Remark. Let w0 be the longest element of the Weyl group of GLn. Convolution

with the complex ∆w0 ∗∆w0 defines the inverse of the Serre functor Sn on the Hecke
category, see [BBM04]. Let w′

0 be the longest element of the Weyl group of GLn−1×Gm

embedded into GLn as a block-diagonal subgroup. We have

Ln ∗ F = ∆∗2
w0
∆

∗(−2)

w′
0

∗ F = S−1
n Sn−1(F),

so nth Jucys-Murphy sheaf can be interpreted as a “ratio” of two Serre functors.
Compare [BK90], Proposition 3.9. We don’t make any use of this fact below.

1.4 Plan of the categorification of the central arrow

The main contribution of this thesis is Theorem 1, which may be of independent
interest. In it, we construct a functor from Rep(GLn) to the completed derived
category of unipotent character sheaves. We use the following universal property of
the category Rep(GLn): to give a monoidal functor from Rep(GLn) to a symmetric
monoidal pseudo-abelian category C, it is enough to specify an object V of C, satisfying
∧n+1V = 0 and such that ∧nV is invertible. It will be an object corresponding
to the standard representation Vn of GLn = GL(Vn), from which one gets other
representations by applying Schur functors and tensoring with powers of ∧nVn. See
Section 2.4.

We will apply this reasoning to the derived category of adjoint-equivariant con-
structible sheaves on GLn. This category is monoidal, product being given by convo-
lution, and can be equipped with a symmetric braided structure, see Section 3.5.

In our algebraic picture, object V should correspond to the element

Π

(∑
i

θi

)
=
∑
i

Li.

We would expect, then, our object V in the category of character sheaves to have
a filtration by Jucys-Murphy sheaves, after we take it to the Hecke category. This
object turns out to be the parabolic Springer sheaf, see Chapter 3.2 for definition, or,
more precisely, its projection to the category of character sheaves. See also a related
computation in the Appendix.

Recall that GLn acts on the variety Nu of its unipotent elements by conjugation,
and orbits of this action are numbered by partitions of n, according to the Jordan
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decomposition. Let ICλ be the intersection cohomology sheaf of the orbit numbered
by a partition λ. Let λk be a “hook” partition (k, 1, . . . , 1). We set λn = (n). Let
SprP ' ICλ1 ⊕ ICλ2 . We have the following

Theorem (Section 4.2). a) ∧kSprP ' (ICλk
⊕ ICλk+1

), for 0 < k < n.

b) ∧nSprP ' ICλn

c) ∧n+1SprP = 0.
Here the exterior powers are with respect to the monoidal structure given by the

convolution on GLn.

The derived category of unipotent character sheaves is closed under convolution,
but lacks a unit object. It is for this reason we must pass to the completed cate-
gory, where the unit object δ̂ exists. Convolution with δ̂ gives a projection from the
full equivariant derived category Db

GLn
(GLn) of constructible sheaves on GLn to the

completed category of unipotent character sheaves. In Section 4.2 we will prove that
∧nSprP ∗ δ̂ is an invertible object in the latter category, and so construct a functor
from Rep(GLn) to it via the strategy indicated above.

1.5 Lie algebra version
Although it is not directly related to the categorification of the homomorphism in
question, we also prove a variant of the theorem of the previous section in the setting
of equivariant sheaves on the Lie algebra of GLn. Here the proof, employing the notion
of the Fourier transform of sheaves on vector spaces, is similar, but more direct.

Namely, identify Nu withe the nilpotent cone N ⊂ gln = Lie(GLn), and again
denote by ICλ the intersection cohomology sheaves on the corresponding orbits. Let

sprP = ICλ1 ⊕ ICλ2 .

We have the following

Theorem (Section 4.3). a) ∧ksprP ' (ICλk
⊕ ICλk+1

), for 0 < k < n.

b) ∧nsprP ' ICλn

c) ∧n+1sprP = 0.
Here the exterior powers are with respect to the monoidal structure given by the

additive convolution on gln.

1.6 The functor from the perfect derived category of
St

We are in the following situation: we have a monoidal functor from the Satake cate-
gory Rep(GLn) to D̂f , as well as (products of) Jucys-Murphy sheaves there, categori-
fying the image of the Bernstein’s lattice of the affine Hecke algebra. Constructions

15



of [Gai01] and [AB09] predict that we should have two additional pieces of data:
monodromy endomorphism of objects coming from the Satake category, and a com-
patible filtration of these by Jucys-Murphy sheaves, corresponding to the filtration of
Gaitsgory’s sheaves by Wakimoto sheaves. Presence of this additional data, which we
construct in Section 5 from the fact that our central sheaves can be obtained by some
parabolic induction and restriction procedure, puts us in the situation of [Bez16]. In
op.cit., such data was used to construct a functor from the coherent version of the
affine Hecke category to its constructible version. We will employ it to construct a
functor from (the perfect part of) the coherent version of the affine Hecke category
to the finite Hecke category D̂f .

1.7 Relation to knot invariants, Hilbert schemes and
matrix factorizations

There is a body of work on various geometric constructions of knot invariants, which
seem to be related to the categorification of the homomorphism Π.

One of the initial motivations of this thesis project was to understand some struc-
tures arising in the recent work [GNR16]. In particular, there is the following con-
jecture. Let FHilbdg be the flag Hilbert dg-scheme of [GNR16], and let SBimn be
the category of Soergel bimodules, see [Soe07]. Homotopy category Kb(SBimn) (or,
rather, its completed variant) is another categorification of the finite Hecke algebra,
equivalent to the one we use, see [BY13].

Conjecture ([GNR16]). There is a pair of adjoint functors

Kb(SBimn) Db
(
CohC∗×C∗

(
FHilbdg

n (C)
))
,

ι∗

ι∗

ι∗ being monoidal and fully faithful.

In particular, functor from the conjecture above is predicted to send certain line
bundles on FHilbdg

n to similarly defined Jucys-Murphy objects in Kb(SBimn), just as
in our conjecture similar line bundles on the diagonal in St are predicted to be sent
to Jucys-Murphy sheaves in D̂f .

In the work [OR17], a functor between two convolution algebras of equivariant
matrix factorization is constructed, and is shown to intertwine the braid version of
the homomorphism Π for the images of affine and finite braid groups inside the
corresponding convolution algebras. This is also applied to the computation of knot
homology.

At this point we do not know any direct relation of the functors constructed in
this thesis to the above settings.

1.8 Organization of the paper
This thesis is organized as follows.
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In Chapter 2 we describe the algebraic setting which we would like to categorify
and give some supporting computations.

In Chapter 3 we define the geometric setup with which we will be working, both in
constructible and coherent settings, and recall the necessary facts and constructions
involving character sheaves.

In Chapter 4 we construct a functor between central categories, and discuss a
variant of the main theorem for Lie algebras.

In Chapter 5 we extend this functor to a functor from the perfect derived category.
In the appendix, we make a remark about a relation of multiplicative Jucys-

Murphy elements to the Kirillov-Pak character formula.
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Chapter 2

Algebraic preliminaries

2.1 Hecke algebras
Let W = Sn be a finite Weyl group of type A, identified with the symmetric group
on n elements, let I ⊂ W be the set of simple reflections,

I = {(1 2), (2 3), ..., (n− 1 n)}.

Let l : W → Z+ be the length function.
The finite Hecke algebra H(W ) = Hn is a unital algebra over Z[v, v−1] generated

by elements ts, s ∈ I, subject to the following relations. Denote ti = t(i(i+1)).

1. titi+1ti = ti+1titi+1.

2. titj = tjti, |i− j| > 1.

3. t2i = 1 + (v−1 − v)ti.

Hn has a basis tw, w ∈ W , defined by tw = ts1 . . . tsk for a reduced expression w =
s1 . . . sk, and the Kazhdan-Lusztig basis Cw, w ∈ W , see [KL79].

Let (X∗,Φ,X∗,Φ
∨) be the root datum of GLn, namely,

X∗ = X∗ =: X ' Zn = spanZ{e1, . . . , en},Φ∨ = Φ = {ei − ej}i 6=j ⊂ X.

W acts on X and Φ permuting ei.
Fix the set of simple roots ∆ = {ei − ei+1}n−1

i=1 . This defines the set of dominant
weights to be X+ = {(λ1, . . . , λn), λk ≥ λk+1 for all k}.

The extended affine Hecke algebra H̃aff
n , corresponding to this root datum, is a

unital algebra over Z[v, v−1] generated by elements ts, s ∈ I, θx, x ∈ X, subject to the
following relations. Denote ti = t(i(i+1)), θi = θei .

1. titi+1ti = ti+1titi+1.

2. titj = tjti, |i− j| > 1.

3. t2i = 1 + (v−1 − v)ti.

19



4. θxθy = θx+y.

5. tiθj = θjti if j 6= i, i+ 1.

6. tiθiti = θi+1.

7. θ0 = 1.

For an element λ ∈ X, let Wλ be its W -orbit.
Following [Lus83], define

zλ =
∑

λ′∈Wλ

θλ.

For a dominant λ ∈ X and µ ≤ λ, define d(µ;λ) to be the multiplicity of the weight µ
in the finite-dimensional irreducible representation Vλ of GLn with the highest weight
λ. As in op.cit., define

sVλ
=
∑
µ≤λ

d(µ;λ)zλ.

We have
sVλ

sV ′
λ
=
∑
λ′′

m(λ, λ′, λ′′)sV ′′
λ
,

where m(λ, λ′, λ′′) satisfies

Vλ ⊗ Vλ′ = ⊕λ′′V
⊕m(λ,λ′,λ′′)
λ′′ .

We have the following Theorem due to J. Bernstein:

Theorem ([Lus83]). The center Z(H̃aff
n ) of the extended affine Hecke algebra is a free

Z[v, v−1]-module with a basis zλ, λ ∈ X+.

Let Π : H̃aff
n → Hn be the homomorphism defined by

Π(ts) = ts, s ∈ I,

Π(θ1) = 1.

It is easy to see, that Π is indeed a homomorphism, is defined uniquely, and that

Π(θk) = tk−1tk−2 . . . t2t
2
1t2...tk−2tk−1.

We denote Li := Π(θi) and call these elements Jucys-Murphy elements in the finite
Hecke algebra.

We have the following theorem:

Theorem ([DJ87],[FG06]). Symmetric polynomials in elements Li lie in the center
Z(Hn) of the finite Hecke algebra. Moreover, the restriction of the homomorphism
Π : Z(H̃aff

n ) → Z(Hn) is surjective.

20



2.2 Elementary symmetric polynomials in Jucys-Murphy
elements

The following interpretation of the elementary symmetric polynomials ek in Jucys-
Murphy elements will be useful to us. Let Vn be the standard n-dimensional repre-
sentation of GLn = GL(Vn). We have

Π(s∧kVn
) = Π

 ∑
λ′∈W (e1+···+ek)

θλ′

 = ek(L1, . . . , Ln).

Let W ′ = Sk × Sn−k ⊂ Sn, considered as a parabolic subgroup with simple re-
flections s1, . . . , sk−1, sk+1, . . . , sn−1, and let W k be the set of minimal length rep-
resentatives of W/W ′. Let w0,k be the longest element in Sk (with respect to the
choice {s1, . . . , sk−1} of simple reflections). Note that L1 . . . Lk = t2w0,k

. We record
the following straightforward computation:

Lemma 2.2.1.
ek(L1, . . . , Ln) =

∑
w∈W ′

twt
2
w0,k

tw−1 .

2.3 Anti-spherical projector
Let w0 be the longest element of W ,. Consider an element

ξ = v−l(w0)
∑
w∈W

(−v)l(w)tw.

We have ξCw = 0, unless w = 1.
Let

H̃aff
n,perf = H̃aff

n ξH̃aff
n .

Let Πperf be the restriction of Π to H̃aff
n,perf . We have Πperf(aξb) = Π(ab)ξ = cabξ,

where cab ∈ Z[v, v−1] is a coefficient of C1 in ab.
Our main result can be considered a categorification of the projection Πperf.

2.4 Universal property of Rep(GLn)

Let C be a C-linear, symmetric monoidal pseudo-abelian category. Then, for any
object X ∈ C and positive integer k, we have the Sk-action on the object Xk, and,
for any partition λ, Schur functors SλX are defined as images of the corresponding
projectors.

Lemma 2.4.1. Let X ∈ Ob(C) be such that ∧nX is invertible and ∧n+1X = 0. Then
there is a monoidal functor

Rep(GLn) → C

21



sending the standard n-dimensional representation of Rep(GLn) to X.

Proof. The fact that ∧nX is invertible implies that X is a rigid object of dimen-
sion n. Thus, by the result of [Del07], there is a functor from the Deligne category
Rep(GL(t = n)) to C, sending the generating object to X. The fact that ∧n+1X = 0
implies, by the second fundamental theorem of invariant theory of the general linear
group, that this functor factors through Rep(GLn).
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Chapter 3

Geometric setup

3.1 Sheaves on the base affine space

Contents of this section is standard, see e.g. [Lus15], [BY13].
If X is an algebraic variety with an action of an algebraic group G, let Db

G(X) be
a bounded constructible G-equivariant derived category of constructible sheaves on
X. If G is trivial, we write simply Db(X).

We write CX for the constant sheaf of rank 1 on X.
Let G be a connected reductive group over C, B its Borel subgroup, T ⊂ B the

maximal torus in it, U its unipotent radical.
Let B = G/B, let Y = G/U . We have a right T × T -action on Y × Y :

(t1, t2)(xU, yU) = (xt1U, yt2U).

Let
Y =

Y × Y

T
,

where T acts on Y × Y diagonally on the right.
More generally, if P ⊂ G is a parabolic subgroup, UP its unipotent radical, L ⊂ P

a Levi subgroup, let BP = G/P , YP = G/UP ,

YP =
G/UP ×G/UP

L
.

G acts on YP diagonally on the left.
Let W = N(T )/T be the Weyl group of G, let I ⊂ W be a set of simple reflections,

let l : W → Z+ be the length function.
We have the natural projection π : Y × Y → B × B, which factors through Y .

Let Ow be a G-orbit in B × B corresponding to w ∈ W , and let Õw = π−1(Ow).

Let Ow, Õw be the corresponding closures, and j̃w : Õw → Y × Y the corresponding
locally-closed embedding.

Let gw be a lift of w ∈ W to N(T ). We have the projection pgw : Õw → T, defined
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by the inclusion
x−1y ∈ Ugwpgw(xU, yU)U.

For a local system L on T , let

∆L
gw = j̃w!p

∗
gwL[dimT + dimY + l(w)],∇L

gw = j̃w∗p
∗
gwL[dimT + dimY + l(w)].

∆L
gw ,∇

L
gw do not depend on a lift gw (up to a non-canonical isomorphism). We

will denote simply by ∆L
w,∇L

w members of their isomorphism classes.
Let j̃•gw : pg−1

w
(1) → Y × Y be the obvious locally-closed embedding. Denote

∆•
gw = j̃•w!Cp

g−1
w

(1)[dimY + l(w)].

Let pi,j : Y × Y × Y → Y × Y be a projection on i’th and j’th factors. For
F ,G ∈ Db

G(Y × Y ), let

F ∗ G = p1,3!(p
∗
1,2F ⊗ p∗2,3G)[− dimY ].

This equips Db
G(Y ×Y ) with the monoidal structure. Convolution YP ×YP is defined

in the same way. Db
G(YP ), considered as the subcategory of L-equivariant objects,

inherits the monoidal structure.
We record the following simple

Lemma 3.1.1. Let L be a W -invariant local system on T . Then ∆L
e ∗∆•

gw ' ∆•
gw ∗

∆L
e ' ∆L

w. Here e ∈ W is the unit element.

3.2 Harish-Chandra functor

Following [Lus85], consider the following diagram:

G× YP

G YP × YP

πG
f̃ (3.1)

with πG(g, xP ) = g, f(g, xUP ) = (xUP , gxUP ), and its version obtained by taking the
quotient with respect to the free right L-action:

G× BP

G YP

πG f (3.2)

with πG(g, xP ) = g, f(g, xP ) = (xUP , gxUP ). We have functors

h̃cP = f̃!π
∗
G[dimYP ], χ̃P = πG!f̃

∗[− dimYP ],
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and
hcP = f!π

∗
G[dimBP ], χP = πG!f

∗[− dimBP ].

When P = B, we simply write

hcP = hc, χP = χ.

We will also need intermediate functors, see [Lus04]. Let P ⊂ Q be two parabolic
subgroups.

ZP,Q

YQ × YQ YP × YP

πQ f (3.3)

Here
ZP,Q = {(g1UQ, g2UQ, xUP ) : g

−1
1 x ∈ Q},

π̃Q(g1UQ, g2UQ, xUP ) = (g1UQ, g2UQ), f̃(g1UQ, g2UQ, xUP ) = (xUP , g2g
−1
1 xUP ).

Let πQ, f be the maps obtained after dividing π̃Q, f̃ by the free right LQ, LP actions,
respectively.

Define

h̃c
Q

P = f̃!π
∗
Q[dimYP − dimYQ], χ̃

Q
P = πQ!f̃

∗[dimYQ − dimYP ],

and
hcQP = f!π

∗
Q[dimBP − dimBQ], χP = πQ!f

∗[dimBQ − dimBP ].

By the result of op.cit., for P ⊃ Q ⊃ R, we have hcQR ◦ hcPQ = hcPR and that
hcPQ(F) = 0 implies F = 0.

Let µ : G×G→ G be the multiplication morphism, let π1, π2 : G×G→ G be the
projections on the corresponding factors. For F ,G ∈ Db(G), let F ∗ G = µ! (π

∗
1F ⊗ π∗

2G).
Let

ÑP = {(g, xP ) : g ∈ xUPx
−1}

be the parabolic Springer resolution, and let π : ÑP → G be the natural projection.
Define

SprP = π∗CÑP
[2 dimUP ]

– the parabolic Springer sheaf.
Recall from [Gin89], that h̃cP , hcP are monoidal functors, and that we have χ̃P ◦

h̃cP (F) = χP ◦ hcP (F) = F ∗ SprP . In particular, identity functor is a summand of
χP ◦ hcP .

Fix J ⊂ I and let WJ ⊂ W be the corresponding parabolic subgroup. Assume
that P is conjugate to the parabolic subgroup PJ corresponding to J . Write W J for
the set of minimal length representatives of W/WJ . For every w ∈ W J , choose a lift
gw to N(T ).

For an objects X, {Ci}ki=1 of a triangulated category, we write X ∈ 〈C1, C2, ..., Ck〉
if there exists a sequence of objects {Xi}ki=1, X1 = X,Xk = Ck, such that for all
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i < k, (Ci, Xi, Xi+1) is a distinguished triangle. The following lemma is a straightfor-
ward consequence of standard distinguished triangles for 6 functors for constructible
sheaves.

Lemma 3.2.1. Let X be a variety stratified by locally closed subvarieties {St}nt=1, and
let jt : St → X be the corresponding locally-closed embeddings. Assume that Sk ⊂ Sl

implies k > l. Then for every F ∈ Db(X), F ∈ 〈jt!j∗tF〉nt=1.

The following lemma will be used to construct a filtration of certain central sheaves
by Jucys-Murphy sheaves:

Lemma 3.2.2 (cf. [Gro92], [Lus13]). h̃c(SprP ) ∈ 〈∆•
gw ∗ ∆•

g−1
w
〉w∈WJ , where objects

are in some non-increasing order with respect to the Bruhat order on {w}.

Proof. Let X = ÑP × Y , and write

φ̃ : X → Y × Y, φ̃(g, xP, yU) = (yU, gyU).

By base change,
h̃c(SprP ) = φ̃!CX [2 dimUP ].

Applying Lemma 3.2.1 to the filtration by

Xw = {(g, xP, yU) ∈ X , x−1y ∈ PwB},

for w ∈ W J , we get that

h̃c(SprP ) ∈ 〈φ̃w!C[2 dimUP ]〉w∈WJ ,

where φ̃w is a restriction φ̃ to Xw.
We now claim that Xw is a bundle over the variety

Cgw = {(xU, yU, zU) : (xU, yU) ∈ Õw,(yU, zU) ∈ Õw−1 ,

pgw(xU, yU) = pg−1
w
(yU, zU) = 1},

with a fiber AdimUP−l(w). Namely, the fibration map πXw sends (g, xP, yU) ∈ Xw to
(yU, zU, gyU), where zU is a unique element of Y such that

(yU, zU) ∈ Õw, pgw(yU, zU) = 1.

To check that this defines a map Xw → Cw, we must verify that pg−1
w
(zU, gyU) = 1.

Indeed, we have z−1gy ∈ z−1yUPy
−1yU = z−1yU . Since pgw(yU, zU) = 1, we have

y−1z ∈ UgwU, so z−1y ∈ Ug−1
w U , and we are done.

Note that π1,3!CCw = ∆•
gw ∗ ∆•

g−1
w

, where π1,3! is the restriction of the projection

Y 3 → Y 2 to Cw. We also have φ̃ = π1,3 ◦ πXw .
So φ̃w!CXw

[2 dimUP ] = ∆•
gw ∗∆•

g−1
w

.
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3.3 Parabolic restriction and induction

Let P ⊂ G be a parabolic subgroup, L be its Levi quotient. Let

G̃P = {(g, xP ) ∈ G× BP : g ∈ xPx−1}

be the parabolic Grothendieck-Springer variety. Consider the standard map πL : G̃P → L,
and a map f : G̃P → YP given by the restriction of the map f from (4.1) from G×BP

to G̃P .
We have the monoidal functor iL : Db

L(L) → Db
G(YP ), iL = f!π

∗
L[dimBP ]. In

fact, it gives an equivalence from Db
L(L) to the subcategory of complexes in Db

G(YP )
supported on the closed subvariety DP = {(xUP , yUP )L : xP = yP} ⊂ YP . Let i◦L be
the inverse equivalence. Let δP : DP → YP be the corresponding closed embedding.
We have the following description of the parabolic restriction and induction functors,
first defined in [Lus85]:

ResGL(F) = i◦Lδ
∗
PhcP (F), IndG

L(G) = χP iL(G).

We will also use another description of induction and restriction functors, also due
to Lusztig. See also [Gin93].

We have that G̃P is a G-equivariant fiber bundle on G/P with a fiber P . The
restriction to the fiber gives a bijective correspondence between G-equivariant com-
plexes on GP and ad-P -equivariant complexes on P . If we equip Db

G(G̃P ) with a
!-convolution structure along G, it is easy to see that the above correspondence be-
comes monoidal. For an object A ∈ Db

P (P ) write Ã for the corresponding object in
Db

G(G̃P ).
Let ιP : P → G be the corresponding closed embedding, let qL : P → L, π̃ : G̃P →

G be the natural projections. We have

ResGL A = qL!ι
∗
PA = qL∗ι

!
PA,

IndG
L A = π̃∗q̃∗LA[2 dimUP ].

3.4 Constructible finite Hecke category and charac-
ter sheaves

Y × Y is a T × T -torsor over B × B. Thus it makes sense to talk about T × T -
monodromic sheaves on Y × Y . For a coset λ +X of a weight λ of LieT , let Pλ be
the category of G-equivariant T × T -monodromic perverse sheaves on Y × Y with
generalized monodromy λ × −λ. If λ = 0 we will call this category unipotent and
denote simply by P . Let Df = DbP .

Our version of the Hecke category is the free-monodromic constructible derived
category

D̂f := D̂b
c(T × T

999 Y × Y )
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defined in [BY13]. It has a perverse t-structure of its own, with the heart P̂ ⊃ P ,
and one has D̂f = Db(P̂).

Remark. Note that both Df and D̂f are monoidal categories. However, Df has
no unit, while D̂f has one, see below. It is for this reason we choose to work with D̂f .
Our results could also be reformulated for certain finite quotients of pro-unipotent
sheaves involved, bearing the just mentioned defect of the finite category in mind.

D̂f has the subcategory T̂ of free-monodromic tilting objects. Convolution with
such an object is an exact functor. It is shown in op.cit. that

D̂f ' Ho(T̂ ).

There is a collection T̂w, w ∈ W, of indecomposable free-monodromic tilting sheaves.
Moreover, T̂w0 satisfies the following property:

∆L̂1
w ∗ T̂w0 ' T̂w0 ∗∆L̂1

w ' T̂w0 .

The category of unipotent character sheaves, CS, is the category of G-equivariant
perverse sheaves F on G such that hc(F) ∈ DbP . By the result of [MV88], this
definition is equivalent to the standard one.

Similarly, we can consider completed categories ĈS, D̂G = Db(ĈS).
Let L̂1 be the free pro-unipotent local system on T , see [BY13]. A sheaf ∆L̂1

e on
Y is the monoidal unit in the category of Db

G(Y). It is the image under hc of the
perverse sheaf δ̂ ∈ ĈS. δ̂ is the monoidal (pro)-unit in the category of unipotent
character sheaves on G.

We have the following

Lemma 3.4.1 ([BY13]).

a) ∆L̂1
w ∗∆L̂1

w′ ' ∆L̂1

ww′ ,∇L̂1
w ∗ ∇L̂1

w′ ' ∇L̂1

ww′ if l(w) + l(w′) = l(ww′).

b) ∆L̂1
w ∗ ∇L̂1

w−1 ' ∇L̂1
w ∗∆L̂1

w−1 ' ∆L̂1
e .

c) D∆L̂1
w ' ∇L̂1

w .

In the same way, if P ⊃ B is a parabolic subgroup with a Levi subgroup L, and
λ is a weight fixed by W (L), we have the pro-local system on T of “infinite Jordan
type” λ, L̂λ, see [Gin88], and a corresponding sheaf ∆L̂λ

e . It is an image under hcPB of
the parabolic character sheaf δ̂λ on YP .

When we say that some object X is invertible with respect to the convolution in
the category D̂f (or in the category of unipotent character sheaves), we mean that
there is an object Y in the corresponding category, such that

X ∗ Y ' Y ∗X ' ∆L̂1
e

(X ∗ Y ' Y ∗X ' δ̂, respectively).
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3.5 Braided structure and the twist
Here we recall the necessary constructions from [BD14].

We will need a notion of the braided structure on the G-equivariant derived cat-
egory of constructible sheaves on G.

Define ξ : G×G→ G×G, (g, h) 7→ (g, g−1hg), τ : G×G→ G×G, (g, h) 7→ (h, g).
We have µ ◦ ξ = µ ◦ τ.

For A,B ∈ Db
G(G), we have A�B ' ξ! (A�B) by G-equivariance of B. So

A ∗B = µ!(A�B) ' µ!ξ! (A�B) = µ!τ! (A�B) ' B ∗ A.

This defines a braided structure on Db
G(G), denoted by

βA,B : A ∗B → B ∗ A.

For any M ∈ Db
G(G) we have an isomorphism θM : M → M called a twist, see

op.cit. It satisfies θA∗B = βA,B ◦ βB,A ◦ (θA ∗ θB). On the stalk of M at a point g ∈ G
it acts by the conjugation by g ∈ ZG(g) – centralizer of g in G.

Corollary 3.5.1. Assume that centralizers of all points in G are connected. Then
Db

G(G) is symmetric, meaning that

βA,B ◦ βB,A = IdB∗A

for all A,B ∈ Db
G(G).

3.6 Sheaves on tori
We recall several facts about the convolution of constructible sheaves on tori, see
[GL96].

For a weight λ of LieT let Lλ be the corresponding local system on T .

Lemma 3.6.1. Let µ∨ : Gm → T be a coweight of T such that 〈λ, µ∨〉 /∈ Z. Then,
for any constructible sheaf F on T , equivariant with respect to the Gm-action defined
by µ∨, we have Lλ ∗ F = 0.

Proof. It is enough to consider the case T = Gm, in which case the statement is
equivalent to the fact H∗

c (Lλ) = 0 for λ 6= 0 ∈ C/2πiZ.

Lemma 3.6.2. Let F ∈ Db(T ) be such that F ∗ Lλ = 0 for all λ 6= 0. Then for all
i, perverse cohomology sheaves pH iF are shifted local systems on T with unipotent
monodromy.

Our proof is a direct adaptation of the proof of Proposition 3.4.5 [GL96]. We state
this proposition and another lemma from op.cit., originally due to Laumon.

Lemma 3.6.3. Let F ∈ Db(T ) on T such that H∗
c (F ⊗ Lλ) = 0 for all λ. Then

F = 0.
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Proof. This is Proposition 3.4.5 in op.cit.

Lemma 3.6.4. Let F ∈ Db(T ) be perverse. Then

χ(F) =
∑
i

(−1)iH i
c(F) ≥ 0.

Proof. This is Corollary 3.4.4 in op.cit.

Proof of Lemma 3.6.2. First note that the condition F ∗ Lλ = 0 is equivalent to the
condition H∗

c (F ⊗ Lλ) = 0. Assume that the statement is known for tori of rank < n,
and let n = rkT . Let T = T ′ × T ′′, where T ′, T ′′ have smaller ranks. Then, for any
weight (λ′, λ′′) of T ′ × T ′′, projection formula gives

πT ′!(F ⊗ L(λ′,λ′′)) ' πT ′!(F ⊗ L(0,λ′′))⊗ Lλ′ .

So, if λ′′ 6= 0, we get, by Lemma 3.6.3, that πT ′!(F ⊗L(0,λ′′)) = 0, so that F is smooth
with unipotent monodromy along all fibers of πT ′ . Since T ′ was chosen arbitrarily,
this implies that F is smooth with unipotent monodromy.

We now need to prove that the result holds for Gm. Consider the lowest non-zero
perverse cohomology sheaf A = pHmin(F). Let A′ ⊂ A be an irreducible subsheaf.
Since H0

c (·) is t-exact from the left, we get that H0
c (A

′ ⊗ Lλ) = 0. This means that
A′ can not be a punctual sheaf, so it is a shift of a (non-derived) ∗-extension of some
local system on a Zariski open subset U ⊂ Gm. We also have χ(A′ ⊗Lλ) = H0

c (A
′ ⊗

Lλ) − H1
c (A

′ ⊗ Lλ) ≤ 0. By Lemma 3.6.4, this implies that χ(A′) = 0, so, by the
Euler-Poincare formula, A′ is either 0 or a shifted rank one local system on Gm. Since
H0

c (A
′ ⊗Lλ) = 0 for λ 6= 0, this implies that A′ is CGm

[1]. Then H0
c (A/A

′ ⊗Lλ) = 0,
and we can repeat the argument by induction on length of A to get that A is a shifted
unipotent local system. Again, this implies that H∗

c (τ
≥min+1F ⊗ Lλ) = 0, and we’re

done by induction.

Corollary 3.6.1. Assume that for F ∈ Db
G(G) we have hc(F) ∗ ∆L̂λ

e = 0 for every
λ 6= 0. Then F ∈ Db(CS).

3.7 Affine Hecke categories

Here we explain the relations between various variants of the affine Hecke category.
Let

K = C((t)) ⊃ O = C[[t]].

Let I be an Iwahori subgroup of GLn(K), let I0 be its pro-unipotent radical. Let
Flaff = GLn(K)/I be the affine flag variety.

Let F̃l
aff

= GLn(K)/I0. We have I/I0 = T and F̃l
aff

is a T -torsor over Flaff with
respect to the right T -action.
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Let DI0I0 be the full subcategory of I0-equivariant sheaves on F̃l
aff

consisting
of complexes whose cohomology is monodromic with respect to the above T -torsor
structure.

Let D̂ be the pro-completion of the category DI0I0 defined in [BY13].
Both categories D̂ and DI0I0 carry a monoidal structure. Remark of Section 3.4

applies here equally.
Recall from [Bez16] that we have the spectral variant of the affine Hecke category.

For an algebraic variety X, let Coh(X) be the category of coherent sheaves on X.
For a closed subscheme Z ⊂ X, let CohZ(X) be the full subcategory of Coh(X)

consisting of sheaves set-theoretically supported on Z.
If X is equipped with an action of an algebraic group G, let CohG(X) be the

category of G-equivariant coherent sheaves on X, and let DG
perf(X) ⊂ Db(CohG(X))

be the subcategory of perfect complexes.
Let ǧ be the Lie algebra of the Langlands dual groupG ,̌ let g̃̌ be the corresponding

Grothendieck-Springer resolution, St = g̃̌ ×ǧ g̃̌ .
Let N ⊂ ǧ be the nilpotent cone.
Let ĝ̌ be the spectrum of the completion of the ring of functions O(ǧ ) at N .
We have a completed variant of St, Ŝt = St ×ǧ ĝ̌ .
Categories Db(CohGN (St)), Db(CohG(Ŝt)) have a natural monoidal structure given

by the convolution.
We have the following

Theorem ([Bez16]). The following are equivalent as monoidal categories:

Db(CohGˇN (St)) ' DI0I0 ,

Db(CohGˇ(Ŝt)) ' D̂.

It is explained in op.cit. that the category DGˇ
perf(Ŝt) can be thought of as a

categorification of the perfect subalgebra H̃aff
perf, see Section 2.3.

We have two natural G -̌equivariant projections π1,2 : St → B, and, for any two
weights λ1, λ2 of T and corresponding equivariant line bundles O(λ1),O(λ2) on B, we
have a line bundle OŜt(λ1, λ2) = π∗

1O(λ1)⊗OSt π
∗
2O(λ2) ∈ DG

perf(Ŝt).
For a representation V of G ,̌ we have a corresponding G -̌equivariant bundle

V ⊗OŜt.
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Chapter 4

Construction of the functor from
Rep(GLn)

4.1 Sheaves on the unipotent variety
In this section G = GLn.

Let Vn be the standard n-dimensional representation of GLn = GL(Vn). Let P be
a parabolic subgroup of GLn fixing a vector in P(Vn).

Recall that G acts on the variety Nu of unipotent elements in G by conjugation,
and orbits of this action are numbered by partitions of n, according to the Jordan
decomposition. Let ICλ be the intersection cohomology sheaf of the orbit numbered
by a partition λ. Let λk be a “hook” partition (k, 1, . . . , 1), and let λn = (n). Then
SprP ' ICλ1 ⊕ ICλ2 . Convolutions ICλ ∗ δ̂ are pro-objects of the category CS.

4.2 Main theorem
By Corollary 3.5.1, the category Db

G(G) is a symmetric monoidal category. This
allows us to define for any object A ∈ Db

G(G) objects ∧kA. We are ready to state the
main theorem of this Chapter:

Theorem 1.

a) ∧kSprP ' (ICλk
⊕ ICλk+1

), for 0 < k < n.

b) ∧nSprP ' ICλn

c) ICλn ∗ δ̂ is invertible under convolution.

d) ∧n+1SprP = 0.

Corollary 4.2.1. There is a monoidal functor $Z : Rep(G) → D̂G, sending Vn to
SprP ∗ δ̂, and a monoidal functor

hc ◦$Z : Rep(G) → D̂f ,
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sending representations of GLn to central objects.

The proof will proceed by induction in n. When n = 1, SprP = δ1 – a sheaf
supported on 1 ∈ C∗ with a 1-demensional stalk, and we need only the fact that
∧2δ1 = 0, which is obvious. Assume that the theorem is known for groups GLk, k =
1, . . . , n− 1.

Proof of a). We will now compute ∧kSprP from the known answer for GLk. Let
Pk ⊃ B be a parabolic subgroup of operators fixing a given k−dimensional subspace
Vk ⊂ Vn, and let Lk ' GLk × GLn−k be its Levi subgroup, regarded as a two-block
subgroup of GLn.

Let G′ = GLk = GL(Vk), let P ′ be a parabolic subgroup fixing a vector in P(Vk).
We have a corresponding parabolic Springer sheaf SprP ′ on G′. Let Sprk = SprP ′�δ1,
a perverse sheaf on Lk.

Recall that πPk
: Pk → Lk denotes the standard projection.

For a line l = xP ∈ G/P ' P(Vn), let Ul = xUPx
−1.

Consider the following variety:

Ñ ′
P = {(l, g) ∈ P(Vk)× GLn : g ∈ Ul}.

We have the natural projection πÑ ′
P
: Ñ ′

P → Pk. Define

F1 = πÑ ′
P ∗CÑ ′

P
[2 dimUP ],

F2 = π∗
Pk
Sprk[2 dimUPk

].

Note that, since centralizers of all elements in Pk are also connected, it makes
sense to talk about Schur functors with respect to the convolution in the category
Db

Pk
(Pk), see Corollary 3.5.1.
Recall notations from Section 3.3.

Lemma 4.2.1. π̃∗∧̃kF1 ' ∧kSprP .

Proof. We will regard elements of G/Pk as elements of the Grassmannian Gr(k, n) of
k-dimensional subspaces in V .

We have the following convolution varieties for π̃∗F̃∗k
1 and SprkP :

C̃k
1 = {(l1, . . . , lk, g1, . . . , gk, V ′) ∈ P(Vn)k ×Gk ×G/Pk : gi ∈ Uli , li ⊂ V ′},

Ck = {(l1, . . . , lk, g1, . . . , gk) ∈ P(Vn)k ×Gk : gi ∈ Uli},

and a commutative diagram
C̃k

1 Ck

G

f

mk

mk
(4.1)

Here f is the map forgetting the k-subspace V ′, and mk is the composition of the
projection to Gk and multiplication (g1, . . . , gk) 7→ g1 . . . gk.
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We have

π̃∗F̃∗k
1 ' mk!CC̃k

1
[2k dimUP ] ' mk!f!CC̃k

1
[2k dimUP ],

SprkP ' mk!CCk [2k dimUP ]

.
Since f is proper and an isomorphism over an open set where {l1, . . . , lk} are in

general position, f!CCk
2

is a semi-simple complex, containing CC̃k
1

as a direct summand.
We get that

∧kSprP D π̃∗∧̃kF1 ' ICλk
⊕ ICλk+1

.

Now, since hypercohomology with compact support is a monoidal functor, we can
compute it for ∧kSprP and get that the hypercohomologies of the sides of the above
inclusion are the same, so it is an isomorphism.

Lemma 4.2.2. a) ∧kF1 ' ∧kF2.

b) ∧k+1F1 = 0.

Proof. Assume that we know that the lemma is proven for all k0 < k. We will now
prove it for k.

It is easy to see that UPk
-averaging of F1 and F2 is the same, namely

πPk!F1 ' πPk!F2,

and, since πPk! is monoidal,

πPk! ∧k F1 ' πPk! ∧k F2.

Since F2 is UPk
-equivariant, we have

∧kF2 ' π∗
Pk
πPk! ∧k F2[2 dimUQ]

Consider a variety

Ck
1 = {(l1, . . . , lk, g1, . . . , gk) ∈ P(Vk)k ×Gk : gi ∈ Uli}.

We have a morphism

mk : C
k
1 → Pk, (l1, . . . , lk, g1, . . . , gk) 7→ g1 . . . gk,

and mk!CCk
1
[2k dimUP ] = F∗k

1 . Consider an open subset Uk of Ck
1 defined as a

subset of (l1, . . . , lk, g1 . . . , gk) with (l1, . . . , lk) in general position, and let Zk be its
complement in Ck

1 . We denote by mk, abusing notation, the restriction of mk above
to Uk, Zk. We have a distinguished triangle

(mk!CUk ,F∗k
1 ,mk!CZk). (4.2)
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It is easy to see that the complexes mk!CUk ,mk!CZk inherit the Sk-action, compatible
with the Sk-action on F∗k

1 coming from the braiding.
We now claim that mk!CUk is UPk

-equivariant. For this purpose, we construct a
map α, making the following diagram commutative:

Uk × UPk
Uk

Pk

α

m′
k

mk

Here m′
k is the composition

Uk × UPk
Pk × UPk

Pk,
mk×Id (x,u) 7→xu

Choice of a Levi subgroup Lk of Pk gives a splitting V = Vk ⊕W . Given such a
splitting, UPk

is identified with the subgroup Id+Hom(W,Vk). Any splitting

Vk = l′1 ⊕ · · · ⊕ l′k, dim l′i = 1,

defines a splitting

UQ = (Id+Hom(W, l′1))× · · · × (Id+Hom(W, l′k)),

with (Id+Hom(W, l′i)) ⊂ Ul′i
.

Pick a point (l1, . . . , lk, g1 . . . , gk, u) ∈ Uk × UPk
. Let

Ri = gi+1gi+2 . . . gk,

l′i = R−1
i li.

Note that, since (li) are in general position, so are (l′i), since the transition matrix in
PGLk between these collections is triangular. Let

u = u′1 . . . u
′
k, u

′
i ∈ Ul′i

be a splitting of u corresponding to the splitting (l′i) of Vk, as above. Let

ui = Riu
′
iR

−1
i .

Note that ui ∈ Uli = URil′i
. We set

α(l1, . . . , lk, g1, . . . , gk, u) = (l1, . . . , lk, g1u1, . . . , gkuk).

It easy to see that g1 . . . gku = g1u1 . . . gkuk, so the desired map α is now constructed.
It remains to observe that α defines a free action of UPk

on Uk, so that we have

m′
k!CUk×UPk

[2 dimUPk
] ' mk!CUk ,
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so the latter sheaf is indeed UPk
-equivariant.

Recall the distinguished triangle (4.2). Applying the projection ψ to the isotypical
component of the sign representation to it, we get a triangle

(ψmk!CUk ,∧kF1, ψmk!CZk).

First complex in this triangle is UPk
-equivariant, so, to prove part a) of the lemma,

it is enough to show that ψmk!CZk ' 0. But this follows from the part b) by the
inductive assumption for k0 = k − 1, definition of Zk and the fact that mk!CZk is a
direct summand (of the symmetrization of, as in Section 3.3) of the corresponding
exterior power on Pk0 , as in the proof of Lemma 4.2.1.

To prove part b), note that ∧k+1F1 is a direct summand of ∧kF1 ∗ F1. Since the
first factor is UPk

-equivariant, so is the whole convolution and

∧k+1F1 ' ∧k+1F2 ' 0.

By our inductive assumption, we want to prove that ∧kSprP ' IndG
Lk
(∧kSprk),

which follows from the above two lemmas.

For a parabolic subgroup Q ⊃ B with a Levi L, we say that a weight λ of LieT is
Q-regular, if its stabilizer in the full Weyl group W is equal to W (L). Lemma below
and its use in the proof are due to Roman Bezrukavnikov.

Lemma 4.2.3. Let the weight λ of T be Q-regular. Then for any F ∈ Db
G(G),

hcQ(F) ∗ δ̂λ ' (iL ◦ ResGL(F)) ∗ δ̂λ.

Proof. (see Section 3.3 for notations)
By definition, we have iL ◦ResGL(F) = δQ∗δ

∗
QhcQ(F). Let j : YQ\DQ → YQ be the

complementary open embedding. We have a distinguished triangle

(j!j
∗hcQ(F), hcQ(F), iL ◦ ResGL(F)).

We will now prove that j!j∗hcQ(F) ∗ δ̂λ = 0. We have

hcQB(j!j
∗hcQ(F) ∗ δ̂λ) = j′!G ∗∆L̂λ

e ,

where j′ is an embedding of an open subset V = {(xU, yU)T ∈ Y , x−1y /∈ Q}, and
G ∈ Db

G(V ). Let Ṽ be the preimage of V in Y ×Y . Ṽ has a filtration by locally closed
subsets Ṽw = {(xU, yU), x−1y ∈ UgwQ}, where w runs through W J for a subset J
of simple reflections in W , corresponding to Q, and gw are some lifts of w to ZG(T ).
Let j̃′w : Ṽw → Ṽ be the corresponding locally closed embeddings. Consider j′!G as
a T -equivariant complex on Y × Y . By Lemma 3.2.1, j′!G ∈ 〈j̃′w!j̃

′∗
w j

′
!G〉w∈WJ , so it is

enough to prove that j̃′w!j̃
′∗
w j

′
!G ∗ ∆L̂λ

e = 0. Consider a point (xU, yU) ∈ Ṽw. Choose
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x, y in the corresponding congruence classes, so that x−1y = gwl, l ∈ L. Since λ is
Q-regular, there is a coweight µ∨ : Gm → T with 〈λ, µ∨ − w(µ∨)〉 6= 0, and such that
µ∨(Gm) is in the center of L. Then, for t ∈ Gm, we have

Ad(µ∨(t))(x−1y) = µ∨(t)gwlµ
∨(t)−1 = µ∨(t)w(µ∨(t))−1(x−1y),

so that the G-equivariant sheaf, equivariant with respect to the right diagonal T -
action, is also equivariant with respect to the action of Gm defined by the coweight
(µ∨ − w(µ∨)) on one of the components. By Lemma 3.6.1, we get the result.

Note that since SprP = ICλ1 ⊕ ICλ2 , we have

∧kSprP ' ∧kICλ2 ⊕ ∧k−1ICλ2 .

Proof of c). By the result of [BFO12], the functor ∇L̂1
w0

∗ hc(·) commutes with the
Verdier duality. We get that

∆L̂1
w0

' D(∇L̂1
w0

∗ hc(δ̂)) ' ∇L̂1
w0

∗ hc(Dδ̂),

so that hc(Dδ̂) ' ∆L̂1
w0

∗ ∆L̂1
w0

, by Lemma 3.4.1, which is invertible. But δ̂ is the IC-
extension of the shifted local system E on a set of regular semisimple elements of G,
dual of which is isomorphic to sgn⊗E , where sgn is the local system corresponding to
the sign representation of Sn. It is easy to see that IC-extension of sgn⊗E is ICλn ∗ δ̂,
so the latter is invertible.

Proof of d). This is equivalent to ∧nICλ2 = 0. By induction and by Lemma 4.2, we
get that hc(∧nICλ2) ∗ ∆L̂λ

e ' 0 for all λ 6= 0. So, by Corollary 3.6.1, ∧nICλ2 is a
unipotent character sheaf. On the other hand,

∧nICλ2 ' ∧nICλ2 ∗ δ̂ D ∧n−1ICλ2 ∗ ICλ2 ∗ δ̂ ' ICλ2 ∗ ICλn ∗ δ̂ ' ICλ2 ∗ Dδ̂.

and so
∧nICλ2 ∗ (Dδ̂)−1 D ICλ2 ∗ δ̂.

But it is easy to see that the last complex is perverse and indecomposable, so
∧nICλ2 = 0, and we are done.

Proof of b). This now follows from a) and d).

4.3 Lie algebra version of the main theorem

The proof above can be straightforwardly adopted to the case of the sheaves on the
Lie algebra gln of GLn, as in [Lus87], [Mir04].

Identifying the nilpotent cone N with the unipotent cone Nu, we get perverse
sheaves ICλ on gln, as in Section 4.1.
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Category Db(gln) is equipped with convolution with respect to the additive group
structure on gln. Since this group structure is abelian, Db(gln) is naturally a sym-
metric braided category. Let sprP ∈ Db(gln) be the perverse sheaf ICλ1 ⊕ ICλ2 . We
have the following

Theorem 2. a) ∧ksprP ' (ICλk
⊕ ICλk+1

), for 0 < k < n.

b) ∧nsprP ' ICλn

c) ∧n+1sprP = 0.

Proof. The proof of part a) is the straightforward adaptation of the proof for the Lie
group. So only the part c) needs a separate proof. In the Lie algebra case it is much
simpler. Recall the Fourier transform functor

FT : Db
Gm

(gln) → Db
Gm

(gln)

from [Lus87], [Mir04]. Here Db
Gm

(gln) stands for the derived category equivariant
with respect to the contracting action of Gm on gln. FT intertwines the convolution
monoidal structure with the regular tensor product.

Let
g̃ln,P = {(x, l) ∈ gln × P(Vn) : xl ⊂ l}

be the parabolic Grothendieck-Springer variety. We have the natural projection

π : g̃ln,P → gln,

and
FT(sprP ) = π∗Cg̃ln,P

[n2].

But all the fibers of π are unions of projective spaces having the total dimension of
cohomology bounded by n. So, with respect to the monoidal structure given by tensor
product, we have

∧n+1Cg̃ln,P
[n2],

and so
∧n+1sprP = 0

with respect to the additive convolution.

4.4 Another description of the isomorphism in the
main theorem

We will need the following description of the isomorphism

∧kSprP ' ICλk
⊕ ICλk+1

.
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Let L be a Levi subgroup of P . We have the natural morphism of functors

SprP ∗ (·) = χPhcP (·) → χP δP∗δ
∗
PhcP (·) = IndG

L ResGL(·),

and so a morphism
φk : ∧kSprP →

(
IndG

L ResGL
)k

(ICλ1) (4.3)

Lemma 4.4.1. φk gives an isomorphism to the corresponding summand of the right
hand side of (4.3).

Proof. For k = 1 the statement is obvious. Assume that it is known for k = k0. We
have a morphism

SprP ∗ ∧k0SprP → IndG
L ResGL(∧k0SprP ).

We want to show that, restricted to the corresponding direct summands, it gives an
isomorphism. But the morphism above gives an isomorphism of the stalks at the
unit e ∈ G, and the summands in question are semi-simple perverse sheaves with all
irreducible summands having non-zero stalks at e, so we are done.
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Chapter 5

Extension to the functor from the
perfect derived category

Since we have Gˇ= G, in this section we will omit the Langlands duality from all
notations.

Define Jucys-Murphy sheaves Li to be

L1 = ∆L̂1
e ,Lk = ∆L̂1

sk−1
∗ Lk−1 ∗∆L̂1

sk−1
,

where si = (i i+ 1), cf. Chapter 2.1. For a weight λ = (λ1, . . . , λn) of GLn write

Lλ = L∗λ2
2 ∗ · · · ∗ L∗λn

n .

Note that we have Lλ ∗ Lµ ' Lλ+µ, since the fact that Jucys-Murphy elements
commute follows just from the braid relations.

In this section we will prove

Theorem 3. There is a monoidal functor $ : DG
perf(Ŝt) → D̂f satisfying the following:

a) $(OŜt) = T̂w0.

b) $(OŜt(λ, µ)) = Lλ ∗ T̂w0 ∗ Lµ for any two weights λ, µ of GLn.

c) $(V ⊗OSt) = (hc ◦$Z(V )) ∗ T̂w0 for any representation V of G.

Remark. This theorem can be thought of as a categorification of the projection
Πperf, see Section 2.3.

Proof. We employ the general construction of [Bez16]. Let t be the Lie algebra of T .
Let Cg̃ be the preimage in g×Y of g̃ under the natural projection g× Y → g× B.

Since the right T -action on Y is free, we have CohG×T (Cg̃) = CohG(g̃).
Let Y = Spec Γ(OY ) be the affine closure of Y .
Now pick a representation V of G, such that

a) V is a multiplicity-free sum of irreducible representations;
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b) Y is a locally closed subvariety of V , namely an orbit of a highest-weight vector;

c) Y is a closure of Y inside V .

Choose an action of t on V so that t ∈ t acts on an irreducible summand with the
highest weight λ by a constant 〈λ, t〉.

Let C g̃ be a closed subscheme of g× t× Y given by

C g̃ = {(x, t, v) ∈ g× t× Y ⊂ g× t× V : x(v) = t(v)}.

Cg̃ becomes an open subset in C g̃, given by (x, t, v) with v having a non-zero
projection to all irreducible summands of V .

Let CSt be the preimage of the diagonal under the map C g̃ × C g̃ → g × g. We
have an open subset CSt ⊂ CSt with a free T 2-action, and CSt/T

2 = St
By an action of a monoidal category A on a triangulated category B we mean

a monoidal functor α : A → End(B), with all α(x) respecting the triangulated
structure.

For a variety X with an action of an algebraic group H, let CohHfr(X) be the full
subcategory of CohH(X), consisting of objects of the form V ⊗OX , V ∈ Rep(H).

We have the following

Proposition ([Bez16], Corollary 18 and Chapter 4.4.1). Let C be a C-linear additive
monoidal category. Suppose we are given

a) A tensor functor F : Rep(G× T ) → End(C), respecting the triangulated struc-
ture.

b) A tensor endomorphism E of F |Rep(G), satisfying

EV1⊗V2 = EV1 ⊗ IdF (V2) + IdF (V1) ⊗ EV2 .

c) An action of O(t) on F by endomorpisms, so that for f ∈ O(t) we have fV1⊗V2 =
fV1 ⊗ IdV2 = IdV1 ⊗ fV2.

d) A “lowest weight arrow” wλ : F (Vw0λ) → F (λ) making the following diagrams
commutative:

F (Vw0λ ⊗ Vw0µ) F
(
Vw0(λ+µ)

)
F (λ)⊗C F (µ) F (λ+ µ)

wλ⊗Cwµ wλ+µ

∼

F (Vw0λ) F (λ)

F (Vw0λ) F (λ)

wλ

Eλ λ

wλ

42



where the right vertical map is the action of the element λ ∈ t ⊂ O(t) coming
from c).

Then the tensor functor F extends uniquely to an action of CohG×T
fr (C g̃) on C. If we

have two copies of the above data, we get an action of CohG
2×T 2

fr (C g̃ × C g̃). In this
case, assume, moreover, that

e) the action of Rep(G×G) factors through the diagonal G→ G×G.

f) this action of Rep(G) is by product with central objects in a braided category C,
with endomorphism E from b) respecting the central structure.

Then we have an action of CohG×T 2

fr (CSt), extending the above data.

We now indicate the structures listed in the above proposition, constructing an
action of CohG×T 2

fr (CSt) on D̂f .
First, the action of Rep(G × G) is given by restriction to the diagonal and con-

volution with central sheaves from Corollary 4.2.1. Action of Rep(T × T ) is given by
left and right convolutions with Jucys-Murphy sheaves Lλ.

Action of (f ⊗ g) ∈ O(t × t) is given by the action of f and g coming from left
and right monodromy, respectively.

We construct the rest of the data and prove the needed compatibilities in the
following sections.

5.1 Lowest weight arrow and monodromy endomor-
phism

For k < n consider the standard representation Vk of GLk = GL(Vk). Let trivGLn−k

stand for the trivial representation of GLn−k. Consider

ϛk = $Z(∧kVk)�$Z(trivGLn−k
),

a (pro-)character sheaf on the Levi subgroup Lk = GLk × GLn−k of G = GLn. Here
the ligature ϛ stands for “Steinberg". Note that we abuse notation here, denoting by
$Z functors G = GLl with different l. It should always be clear what we mean.

We have $Z(∧kVn) = IndG
L(ϛk).

ϛk is the IC-extension of the local system on the set of regular semisimple el-
ements GLreg

k × GLreg
n−k, given by a module over the extended affine Weyl group

(Sk × Sn−k)n Zn, with a pro-unipotent action of Zn. Or, passing to the logarithms
of the monodromy, by a module over

Ak = C[Sk × Sn−k]n S(t) = C[Sk × Sn−k]nC[e1, . . . , en].

Note that the action of (e1 + · · · + ek) ∈ Ak is by a module endomorphism. Let Pk

be a parabolic subgroup corresponding to Lk. We have

hc ◦$Z(∧kVn) = hcPk
B ◦ hcPk

◦ χPk
iLk

(ϛk).
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Let ωk be the lowest weight of ∧kVn. We have

hcPk
B ◦ iLk

(ϛk) ' Lωk
= L1 ∗ · · · ∗ Lk,

see the proof of Theorem 1. We also have the natural morphism

rk : hcPk
◦ χPk

iLk
(ϛk) → iLk

(ϛk),

see Section 3.3.
Combining, we get an endomorphism

IndG
Lk
(e1 + · · ·+ ek) =: εk ∈ End($Z(∧kVn)),

which makes the following diagram commutative:

$(∧kVn) Lωk

$(∧kVn) Lωk

wωk

Ek ωk

wωk

Here wωk
= hcPk

B (rk), Ek = hc(εk), and ωk comes from a monodromy action on
Lωk

.
We define wωk

to be the lowest weight arrows for the images of fundamental
representations ∧kVn. Note that, since the lowest weight vector of any representation
can be given by a product of the lowest weight vectors of fundamental representations
in their tensor product, we may define, for a lowest weight λ =

∑
aiωi, wλ =

∏
iw

∗ai
ωi

.
Now the condition b) of Proposition 5 recovers EV from E1 in a unique way. The

only thing left to check is

Lemma 5.1.1. Eωk
obtain from E1 by imposing condition b) is equal to Ek defined

above.

Proof. Recall that we have a natural morphism of functors

SprP ∗ (·) → IndG
P ResGP (·),

which gives a morphism

Spr∗kP (·) →
(
IndG

P ResGP
)k

(·).

By the result of Section 4.4, it gives an isomorphism on the direct summands corre-
sponding to the exterior power. If a character sheaf F is given by the IC-extension of
a local system corresponding to a C[Sn] n Zn-module M , then IndG

P ResGP F is given
by the IC-extension corresponding to a C[Sn]n Zn-module C[Sn]⊗C[Sn−1] M .

Let Vn be the n-dimensional permutation representation of Sn. Choosing an iso-
morphism of Sn-modules

C[Sn]
⊗C[Sn−1]

k ⊗C[Sn−1] trivSn ' V ⊗k
n
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and comparing the actions under this identification, we get that the action of Eωk
on

the corresponding direct summand is the same as given by Ek.

5.2 Filtration by Jucys-Murphy sheaves

We have that Pk ⊃ B is a parabolic subgroup corresponding to the subset J =
{s1, . . . , sk−1, sk+1, . . . , sn−1} ⊂ I. By Lemmas 3.1.1, 3.2.2 and the discussion in
Section 2.2, we get

Lemma 5.2.1. (hc ◦$Z)(∧kVn) ∈ 〈Lλ′〉λ′∈Wωk
.

5.3 Passage from CSt to St

We constructed the action of CohG×T 2

fr CSt on D̂f . Consider the action on the object
T̂w0 . This gives a functor

$ : CohG×T 2

fr CSt → D̂f .

Since Rep(G×T 2) act by convolution with objects having a filtration by products
of ∆L̂1

w , discussion of T̂w0 in Section 3.4 gives that $ in fact sends CohG×T 2

fr CSt to T̂ .
Thus, we get a functor

Ho(CohG×T 2

fr CSt) → Ho(T̂ ) ' D̂f .

Finally, we employ the following proposition from [AB09]. In any tensor category
over a field of characteristic zero one can construct a Koszul complex Kφ,d associated
to any morphism φ : V → L and d ∈ Z>0, namely the complex

0 → ∧d(V ) → ∧d−1(V )⊗ L→ · · · ∧d−i (V )⊗ Symi(L) → · · · → Symd(L) → 0.

Let Kλ be the Koszul complex Kwλ,dimVλ
in
(
CohG×T 2

fr CSt,⊗OCSt

)
Proposition 1 ([AB09], Lemma 20). Assume there is an action of

a : Ho(CohG×T 2

fr CSt) y C

such that a(Kλ)x = 0 for all λ and some object x ∈ Ob(C). Then the functor

F̄ : Ho(CohG×T 2

fr CSt) → C, y 7→ a(y)x

factors through the functor
F : DG

perf(St) → C.

Functor π satisfies the condition of the above proposition, because, on an object
of the form V ⊗O, V ∈ Rep(G× T 2), it is given by V ⊗ T̂w0 . We have

φ(Kλ) = kλ ⊗ Tw0 = 0,

45



where kλ is the (obviously acyclic) Koszul complex in Rep(G× T 2).
Now, as in [Bez16], the fact that the action of E is pro-nilpotent implies that we

get a functor
$ : DG

perf(Ŝt) → D̂f .

5.4 Compatibility with the monoidal structure

It is shown in [Bez16] that the convolution F ∗ G in DG
perf(Ŝt) can be computed

by taking total complex of a bicomplex {F i ∗ Gj}, where {F i}, {Gj} are complexes
representing F ,G in Ho(CohfrŜt). Similarly, the convolution F ∗ G in D̂f can be
computed by taking total complex of a bicomplex {F i ∗ Gj}, where {F i}, {Gj} are
complexes representing F ,G in Ho(T̂ ). Thus, we only need to check

$(OŜt ∗ OŜt) ' T̂w0 ∗ T̂w0 ,

which is again a result of op.cit.

46



Appendix A

Remark on the Kirillov-Pak character
formula

In this Appendix we discuss a formula from [KP90]. We include it for the sake of
completeness, because it was a part of our initial motivation for choosing the parabolic
Springer sheaf as the image of the standard representation of GLn in Theorem 1.
We guessed it independently using CHEVIE package [GHL+96] for GAP3 computer
algebra system [S+97].

Let V be the standard n-dimensional permutation representation of Sn, and con-
sider

R = C[x1, . . . , xn]

as a graded Sn-module, with Sn-action permuting the variables.

Note that, on the one hand, local system defining the character sheaf SprP ∗ δ̂ is
given by R ⊗ V considered as a C[Sn] n R-module. On the other hand, hc(SprP ∗
δ̂) caregorifies the sum of Jucys-Murphy elements, and this is known to act in the
irreducible module Eλ of Hn corresponding to a Young diagram λ by the constant∑

�i∈λ

qc(�i) = e1
(
qc(�1), . . . , qc(�n)

)
,

where the sum is taken over the boxes of diagram λ, c(·) stands for the content of a
box, and q = v2, see [IO05].

We can write the same expressions for ∧kSprP ∗ δ̂ involving elementary symmetric
polynomials ek in Jucys-Murphy sheaves, see 2.2.

Let Λ be the ring of symmetric functions, and let χq stand for the Frobenius
character from representations of Sn to Λ[[q]]. Let sλ be the Schur symmetric function
corresponding to a partition λ. Define power series Qλ ∈ Z[[q]] by

χq(R) =
∑

Qλsλ,

The above discussion suggests the following:
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Proposition ([KP90]).

χq(∧kV ⊗R) =
∑
λ

ek
(
qc(�1(λ)), . . . , qc(�n(λ))

)
Qλsλ.

Proof. Indeed, it is well-known that

Qλ = sλ(1, q, q
2, . . . ) = qb(λ)

1∏
�i∈λ(1− qh(�i))

,

where b(λ) =
∑

i(i− 1)λi, and h(·) stands for the hook length, so the proposition is
precisely the statement of [KP90] in the coefficient of sk.
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